If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3m^2=123
We move all terms to the left:
3m^2-(123)=0
a = 3; b = 0; c = -123;
Δ = b2-4ac
Δ = 02-4·3·(-123)
Δ = 1476
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1476}=\sqrt{36*41}=\sqrt{36}*\sqrt{41}=6\sqrt{41}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{41}}{2*3}=\frac{0-6\sqrt{41}}{6} =-\frac{6\sqrt{41}}{6} =-\sqrt{41} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{41}}{2*3}=\frac{0+6\sqrt{41}}{6} =\frac{6\sqrt{41}}{6} =\sqrt{41} $
| 1/5x—12=-3 | | 4−2u=–10 | | -9(x-6)=-207. | | 68.96=4b+5 | | 2p(p)=90 | | 4(2z-4)=32 | | 8(m+2)=4(4+2m) | | r–2+ 3=0 | | X/4=m | | 5x+3)x+4)=28 | | 3(x-2))-8=6(x-2)+16 | | 8y-9=79 | | 110=-1+3m | | x/18=30 | | x+14+x+9=5x-10 | | 3.6c+4–2.5c=3.2c–4+7.15c | | 5/x-2=3/2x+3 | | 4/3=1/4d | | 7x-14x=1-50 | | -4x=3x+9 | | -1=9+p/6 | | 54=-128-3x-10x | | 91=28+x | | 1/5x-8=1 | | 9/4=45/x | | 3x-10+x-10+x=180 | | -5(-3u+2)-3u=2(u-3)-2 | | -12c-4+7.5c-11=6 | | 8d-2d-6d+2d=16 | | 10x=94 | | 6x+20=2x-10 | | −x2/7+8 = 0 |